CS315-02-2024F Midterm October 10, 2024

Name (Last, First):

This exam consists of 5 questions on 7 pages. Be sure you have the entire exam before starting. The point
value of each question is indicated at its beginning; the entire exam is worth 100 points. Individual parts of a
multi-part question are generally assigned approximately the same point value; exceptions are noted. For this
exam you are allowed to bring a single page of notes (front and back). You may NOT share material with
another student during the exam. Use of electronic devices is not allowed.

Be concise and clearly indicate your answers. Presentation and simplicity of your answers may affect your
grade. Answer each question in the space following the question. If you find it necessary to continue an
answer elsewhere, clearly indicate the location of its continuation and label its continuation with the question
number and subpart if appropriate.

You should read through all the questions first, then pace yourself.

Problem Possible Score

20
20
20
20
20

T W N =

Total 100




CS315-02-2024F Midterm October 10, 2024

1 (20 points)

Short answer questions
(a) Consider the following C code snippet:

int *q = (int *) O0x3CDE2218;
Q=49+

What is the value of q after executing this snippet? Give the value in hexadecimal.

(b) Consider the following C code snippet:
uint32_t r = ((0x11223344) >> 8) & OxFF;

What is the value of r in hexadecimal after executing this statement?

(c) Consider this 8-bit 2’s complement binary value: 0b11101100. What is this value in decimal? Show your
work.

(d) Assume you have a Direct Mapped Cache with 64 words and block size of 2 words. How many total slots
does this cache have? How many slot index bits are there in a 64 bit address?



CS315-02-2024F Midterm October 10, 2024

2 (20 points)
RISC-V Assembly Part 1

Consider the following RISC-V assembly code snippets and initial register values. Show the values of each
register used next to each instruction. For example:

1i t0, 1 # 10 <- 1
add t0, t0, tO # r0 <- 1 + 1 = 2

You must show your work to get credit.
(a) Assume a0 = 4, al = 3, a2 = 7. What is the value of a0 after executing this snippet?

add a0, al, a2
mul a0, a0, al
srai a0, a0, 1

(b) Assume a0 = 3, al = 2. What is the value of a0 after executing this snippet?

beq a0, al, foo
addi a0, a0, 22
Jj boo
foo:
addi a0, a0, 1
j goo
boo:
bne a0, al, goo
addi a0, a0, 33
goo:
addi a0, a0, 1

(c) Assume a0 = 10, al = 22. What is the value of a0 after executing this snippet?
addi sp, sp, -16

sw al, (sp)
addi al, a1, 1
sw al, 4(sp)
mv a0, sp

lw a0, (a0)

addi sp, sp, 16

(d) Assume a0 = 5, al = 1, a2 = 3. What is the value of a0 after executing this snippet? How many
instructions are executed in this snippet? Labels do not count as instructions, but branches count if they are
taken or not.

loop:
beq a2, al, loopend
addi a0, a0, 2
addi a2, a2, -1
j loop
loopend:
addi a0, a0, 3



CS315-02-2024F Midterm October 10, 2024

3 (20 points)
RISC-V Assembly Part 2

Consider the following RISC-V assembly function. Answer the questions below.

.global func_s
.global swap
func_s:
addi sp, sp, —48
sd ra, (sp)
1i t0, 1
floop:
bge t0, al, fdone
mv t1, tO
wloop:
ble t1, zero, wdone
1i t3, 4
mul t4, t1, t3
add tb5, a0, t4
addi t6, t5, -4
lw t5, (t5)
lw t6, (t6)
ble t6, tb, wdone
sd a0, 8(sp)
sd al, 16(sp)
sd t0, 24(sp)
sd t1, 32(sp)
mv al, ti
addi a2, t1, -1
call swap_s
14 a0, 8(sp)
1d al, 16(sp)
1d t0, 24(sp)
1d t1, 32(sp)
addi t1, t1, -1
j wloop
wdone:
addi tO, tO, 1
j floop
fdone:
1d ra, (sp)
add sp, sp, 48
ret

(a) What does this function do? Give a possible C prototype for this function.
(b) What caller-saved registers are preserved if any?
(b) What callee-saved registers are preserved if any?

(¢) How much of the allocated stack space is used by this function?



CS315-02-2024F Midterm October 10, 2024

4 (20 points)

Recursive Sum Array

Recall in class we developed a RISC-V program called sumarr_s.s that sums the elements of an integer
array. Here is a recursive version of the sum_arr_c function:

int sumarr_rec_c(int *arr, int start, int end) {
int r;
if (start == end) {
r = arr[start];
} else {
r = arr[start] + sumarr_rec_c(arr, start + 1, end);
}
return r;

}

Write an equivalent RISC-V Assembly version of this program called sumarr_rec_s. Your implementation
must be recursive, must follow the logic in the C version, and must follow the RISC-V calling conventions. In
particular, you must implement indexed-based array access like the C code. You can write your program in
two columns to make it fit on this page.



CS315-02-2024F Midterm October 10, 2024

5 (20 points)

RISC-V Machine Code Encoding

For this problem we are going to build instruction encoders. That is, we are going to write functions that
construct 32-bit instruction words from indivdual field values. Think of this as the opposite of the decoding
we did in Project04. First, consider the R-type instruction format:

|31 25]24 20119 15|14 12111 716 0l
| funct7 |  rs2 | rsl | funct3 | rd | opcode |

Here is an encoder function for the R-type:
uint32_t encode_r_type(uint32_t funct7, uint32_t rs2, uint32_t rsi,
uint32_t funct3, uint32_t rd, uint32_t opcode) {

return (funct7 << 25) | (rs2 << 20) | (rsl << 15) | (funct3 << 12) | (rd << 7) | opcode;

}

Now, consider the S-type instruction word format:

|31 25|24 20119 15(14 12111 716 0l
| imm[11:5] | rs2 | rsl | funct3 | imm[4:0] | opcode |

Implement the encoder function for the S-type format. You can only use C variables and operators, you
cannot assume you have helper functions like get_bits(). Hint: you will need to take apart the imm value
to get the different parts to put in the final instruction word.

uint32_t encode_s_type(int32_t imm, uint32_t rs2, uint32_t rsi,
uint32_t funct3, uint32_t opcode) {



CS315-02-2024F Midterm October 10, 2024

Continue your answers here if necessary.



	(20 points)
	(20 points)
	(20 points)
	(20 points)
	(20 points)

